Line 1: | Line 1: | ||
+ | =[[HW1_MA453Fall2008walther|HW1]] Discussion, [[MA453]], Fall 2008, [[user:walther|Prof. Walther]]= | ||
+ | ==Problem Statement== | ||
+ | ''Could somebody please state the problem'' | ||
+ | |||
+ | ---- | ||
+ | ==Discussion== | ||
+ | |||
Using Binomial Theorem, <math>(a+b)^n=\binom{n}{0}a^n+ \binom n 1 a^{n-1} b+...+\binom{n}{n}b^n</math>. | Using Binomial Theorem, <math>(a+b)^n=\binom{n}{0}a^n+ \binom n 1 a^{n-1} b+...+\binom{n}{n}b^n</math>. | ||
We have <math>\binom{n}{0}+ \binom{n}{1}+...+\binom{n}{n}=(1+1)^n=2^n</math> | We have <math>\binom{n}{0}+ \binom{n}{1}+...+\binom{n}{n}=(1+1)^n=2^n</math> | ||
− | + | ---- | |
== Using Induction == | == Using Induction == | ||
Line 17: | Line 24: | ||
---- | ---- | ||
+ | [[HW1_MA453Fall2008walther|Back to HW1]] | ||
+ | |||
+ | [[Main_Page_MA453Fall2008walther|Back to MA453 Fall 2008 Prof. Walther]] |
Revision as of 15:46, 22 October 2010
Contents
HW1 Discussion, MA453, Fall 2008, Prof. Walther
Problem Statement
Could somebody please state the problem
Discussion
Using Binomial Theorem, $ (a+b)^n=\binom{n}{0}a^n+ \binom n 1 a^{n-1} b+...+\binom{n}{n}b^n $.
We have $ \binom{n}{0}+ \binom{n}{1}+...+\binom{n}{n}=(1+1)^n=2^n $
Using Induction
Base case:
n=0: $ 2^0=1 $ Subsets with 0 elements: {∅}
n=1: $ 2^1=2 $ Subsets with 1 elements: {∅}, {1}
So we can assume a set S with n elements has $ 2^n $ subsets.
n+1: $ 2^(n+1) = 2^1 + 2^n = 2*2^n = 2^(n+1) $
-Jesse Straeter