Line 2: Line 2:
  
 
We have <math>\binom{n}{0}+ \binom{n}{1}+...+\binom{n}{n}=(1+1)^n=2^n</math>
 
We have <math>\binom{n}{0}+ \binom{n}{1}+...+\binom{n}{n}=(1+1)^n=2^n</math>
 +
 +
 +
== Using Induction ==
 +
 +
'''Base case:''' <br>
 +
n=0: <math>2^0=1</math> Subsets with 0 elements: {∅} <br>
 +
n=1: <math>2^1=2</math> Subsets with 1 elements: {∅}, {1}
 +
 +
So we can assume a set ''S'' with ''n'' elements has ''2^n'' subsets.
 +
 +
n+1: <math>2^(n+1) = 2^1 + 2^n = 2*2^n = 2^(n+1)</math>
 +
 +
-Jesse Straeter
 +
 +
----

Revision as of 09:45, 7 September 2008

Using Binomial Theorem, $ (a+b)^n=\binom{n}{0}a^n+ \binom n 1 a^{n-1} b+...+\binom{n}{n}b^n $.

We have $ \binom{n}{0}+ \binom{n}{1}+...+\binom{n}{n}=(1+1)^n=2^n $


Using Induction

Base case:
n=0: $ 2^0=1 $ Subsets with 0 elements: {∅}
n=1: $ 2^1=2 $ Subsets with 1 elements: {∅}, {1}

So we can assume a set S with n elements has 2^n subsets.

n+1: $ 2^(n+1) = 2^1 + 2^n = 2*2^n = 2^(n+1) $

-Jesse Straeter


Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin