(New page: Show that <math> 5*n + 3 </math> and <math> 7*n + 4 </math> are relatively prime. <math> 7*n + 4 = 5*n + 3 + 2*n + 1 5*n + 3 = 2*(2*n + 1) + n + 1 2*n + 1 = 1*(n + 1) + n n + 1 = 1*n + 1...)
 
Line 1: Line 1:
 
Show that <math> 5*n + 3 </math> and <math> 7*n + 4 </math> are relatively prime.
 
Show that <math> 5*n + 3 </math> and <math> 7*n + 4 </math> are relatively prime.
 
<math>
 
<math>
7*n + 4 = 5*n + 3 + 2*n + 1
+
7*n + 4 = 5*n + 3 + 2*n + 1<br>
 
5*n + 3 = 2*(2*n + 1) + n + 1
 
5*n + 3 = 2*(2*n + 1) + n + 1
 
2*n + 1 = 1*(n + 1) + n
 
2*n + 1 = 1*(n + 1) + n

Revision as of 19:13, 6 September 2008

Show that $ 5*n + 3 $ and $ 7*n + 4 $ are relatively prime. $ 7*n + 4 = 5*n + 3 + 2*n + 1<br> 5*n + 3 = 2*(2*n + 1) + n + 1 2*n + 1 = 1*(n + 1) + n n + 1 = 1*n + 1 $

After constant long division we get to the base equation where there is still a remainder of 1. Therefore $ 5*n + 3 $ and $ 7*n + 4 $ are relatively prime.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva