(New page: ==Sampling Theorem== (Test question to state in your own words!) Let <math>\omega_m</math> be a non-negative number. Let x(t) be a signal with <math>X(\omega)=0</math> when <math>|\omega...)
 
(Sampling Theorem)
 
Line 13: Line 13:
  
 
then x(t) can be uniquely recovered from its samples.
 
then x(t) can be uniquely recovered from its samples.
 +
 +
 +
Go back to [[Final_ECE301Fall2008mboutin| Final Exam Summary]]

Latest revision as of 09:02, 11 December 2008

Sampling Theorem

(Test question to state in your own words!)

Let $ \omega_m $ be a non-negative number.

Let x(t) be a signal with $ X(\omega)=0 $ when $ |\omega|>\omega_m $ (ie a band limited signal)

Consider the samples x(nT), for n=0, 1, -1, 2, -2, ...

If

$ T<\frac{1}{2}(\frac{2\pi}{\omega_m}) $

then x(t) can be uniquely recovered from its samples.


Go back to Final Exam Summary

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman