(Chapter 8)
(Chapter 8)
Line 17: Line 17:
  
 
==Chapter 8==
 
==Chapter 8==
#Complex Exponential and Sinusoidal Amplitude Modulation (AM) <math> y(t) = x(t)c(t) </math>
+
#'''Complex Exponential and Sinusoidal Amplitude Modulation''' (You Can Hear the Music on the Amplitude Modulation Radio -''Everclear'') Systems with the general form <math> y(t) = x(t)c(t) </math> where <math>c(t)</math> is the ''carrier signal'' and <math>x(t)</math> is the ''modulating signal''. The ''carrier signal'' has its amplitude multiplied (modulated) by the information-bearing ''modulating signal''.
##<math>c(t) = e^{\omega_c t + \theta_c}</math>
+
##Complex exponential ''carrier signal'': <math>c(t) = e^{\omega_c t + \theta_c}</math>  
##<math>c(t) = cos(\omega_c t + \theta_c )</math>
+
##Sinusoidal ''carrier signal'': <math>c(t) = cos(\omega_c t + \theta_c )</math>
#Recovering the Information Signal <math>x(t)</math> Through Demodulation
+
#'''Recovering the Information Signal''' <math>x(t)</math> '''Through Demodulation'''
 
##Synchronous
 
##Synchronous
 
##Asynchronous
 
##Asynchronous
#Frequency-Division Multiplexing
+
#'''Frequency-Division Multiplexing''' (Use the Entire Width of that Frequency Band!)
#Single-Sideband Sinusoidal Amplitude Modulation
+
#'''Single-Sideband Sinusoidal Amplitude Modulation''' (Save the Bandwidth, Save the World!)
#AM with A Pulse-Train Carrier
+
#'''AM with a Pulse-Train Carrier''' Digital Airwaves
:<math>c(t) = \sum_{k=-\infty}^{+\infty}\frac{sin()k\omega_c \Delta /2}{\pi k}e^{jk\omega_c t}</math>
+
##<math>c(t) = \sum_{k=-\infty}^{+\infty}\frac{sin(k\omega_c \Delta /2)}{\pi k}e^{jk\omega_c t}</math>
 +
##Time-Division Multiplexing "Dost thou love life? Then do not squander time; for that's the stuff life is made of." -''Benjamin Franklin'')
 +
Recommended Exercises:
 
8.1, 8.2, 8.3, 8.5, 8.8, 8.10, 8.11, 8.12, 8.21, 8.23
 
8.1, 8.2, 8.3, 8.5, 8.8, 8.10, 8.11, 8.12, 8.21, 8.23
  

Revision as of 02:05, 5 December 2008

Suggested problems from Oppenheim and Willsky

Chapter 7

  1. Sampling
    1. Impulse Train Sampling
    2. The Sampling Theorem and the Nyquist
  2. Signal Reconstruction Using Interpolation: the fitting of a continuous signal to a set of sample values
    1. Sampling with a Zero-Order Hold (Horizontal Plateaus)
    2. Linear Interpolation (Connect the Samples)
  3. Undersampling: Aliasing
  4. Processing CT Signals Using DT Systems (Vinyl to CD)
    1. Analog vs. Digital: The Show-down (A to D conversion -> Discrete-Time Processing System -> D to A conversion
  5. Sampling DT Signals (CD to MP3 albeit a complicated sampling algorithm, MP3 is less dense signal)

7.1, 7.2, 7.3, 7.4, 7.5, 7.7, 7.10, 7.22, 7.29, 7.31, 7.33

Chapter 8

  1. Complex Exponential and Sinusoidal Amplitude Modulation (You Can Hear the Music on the Amplitude Modulation Radio -Everclear) Systems with the general form $ y(t) = x(t)c(t) $ where $ c(t) $ is the carrier signal and $ x(t) $ is the modulating signal. The carrier signal has its amplitude multiplied (modulated) by the information-bearing modulating signal.
    1. Complex exponential carrier signal: $ c(t) = e^{\omega_c t + \theta_c} $
    2. Sinusoidal carrier signal: $ c(t) = cos(\omega_c t + \theta_c ) $
  2. Recovering the Information Signal $ x(t) $ Through Demodulation
    1. Synchronous
    2. Asynchronous
  3. Frequency-Division Multiplexing (Use the Entire Width of that Frequency Band!)
  4. Single-Sideband Sinusoidal Amplitude Modulation (Save the Bandwidth, Save the World!)
  5. AM with a Pulse-Train Carrier Digital Airwaves
    1. $ c(t) = \sum_{k=-\infty}^{+\infty}\frac{sin(k\omega_c \Delta /2)}{\pi k}e^{jk\omega_c t} $
    2. Time-Division Multiplexing "Dost thou love life? Then do not squander time; for that's the stuff life is made of." -Benjamin Franklin)

Recommended Exercises: 8.1, 8.2, 8.3, 8.5, 8.8, 8.10, 8.11, 8.12, 8.21, 8.23

Chapter 9

9.2, 9.3, 9.4, 9.6, 9.8, 9.9, 9.21, 9.22

Chapter 10

10.1, 10.2, 10.3, 10.4, 10.6, 10.7, 10.8, 10.9, 10.10, 10.11, 10.13, 10.15, 10.21, 10.22, 10.23, 10.24, 10.25, 10.26, 10.27, 10.30, 10.31, 10.32, 10.33, 10.43, 10.44.

Note: If a problem states that you should use “long division”, feel free to use the geometric series formula instead.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood