Line 21: Line 21:
 
:<math>X(Z) = -\left(\sum_{m=0}^{\infty}(2z)^{m}-1\right)</math>
 
:<math>X(Z) = -\left(\sum_{m=0}^{\infty}(2z)^{m}-1\right)</math>
  
if <math>|2z| is greater than or equal to 1 then x(z) diverges, else:
+
if |2z| is greater than or equal to 1 then x(z) diverges, else:
  
 
:<math>x(z) = -\left(\frac{1}{1-2z}-1\right)</math>
 
:<math>x(z) = -\left(\frac{1}{1-2z}-1\right)</math>

Latest revision as of 16:34, 28 November 2008

This page would give an example of how to perform the z-transform.

Suppose

$ x[n] = \frac{-u[-n-1]}{2^n} $

Using the definition of z-transform:

$ X(Z) = \sum_{n=-\infty}^{\infty}x[n]z^{-n} $
$ X(Z) = \sum_{n=-\infty}^{\infty}\frac{-u[-n-1]}{2^n}z^{-n} $
$ X(Z) = \sum_{n=-\infty}^{-1}-\frac{z^{-n}}{2^n} $

by letting m = -n

$ X(Z) = \sum_{m=1}^{\infty}-\frac{z^m}{2^{-m}} $
$ X(Z) = -\sum_{m=1}^{\infty}(2z)^{m} $
$ X(Z) = -\left(\sum_{m=0}^{\infty}(2z)^{m}-1\right) $

if |2z| is greater than or equal to 1 then x(z) diverges, else:

$ x(z) = -\left(\frac{1}{1-2z}-1\right) $
$ x(z) = \frac{2z}{2z-1} $

Therefore, the z-transform of $ \frac{-u[-n-1]}{2^n} $ is

$ \frac{2z}{2z-1} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood