Line 16: | Line 16: | ||
:<math>X(Z) = \sum_{m=1}^{\infty}-\frac{z^m}{2^{-m}}</math> | :<math>X(Z) = \sum_{m=1}^{\infty}-\frac{z^m}{2^{-m}}</math> | ||
+ | |||
+ | :<math>X(Z) = -\sum_{m=1}^{\infty}(2z)^{m}</math> | ||
+ | |||
+ | :<math>X(Z) = -\left(\sum_{m=0}^{\infty}(2z)^{m}-1\right)</math> |
Revision as of 16:28, 28 November 2008
This page would give an example of how to perform the z-transform.
Suppose
$ x[n] = \frac{-u[-n-1]}{2^n} $
Using the definition of z-transform:
- $ X(Z) = \sum_{n=-\infty}^{\infty}x[n]z^{-n} $
- $ X(Z) = \sum_{n=-\infty}^{\infty}\frac{-u[-n-1]}{2^n}z^{-n} $
- $ X(Z) = \sum_{n=-\infty}^{-1}-\frac{z^{-n}}{2^n} $
by letting m = -n
- $ X(Z) = \sum_{m=1}^{\infty}-\frac{z^m}{2^{-m}} $
- $ X(Z) = -\sum_{m=1}^{\infty}(2z)^{m} $
- $ X(Z) = -\left(\sum_{m=0}^{\infty}(2z)^{m}-1\right) $