(New page: This page shows an example of LT transform computation let <math>x(t) = -e^{-2t}u(-t)</math> then :<math>X(s) = \int^{\infty}_{-\infty}x(t)e^{-st}dt</math> :<math>X(s) = \int^{\infty}_...)
 
Line 16: Line 16:
  
 
:<math>X(s) = \int^{0}_{-\infty}-e^{-(2+a)t}e^{-jwt}dt</math>
 
:<math>X(s) = \int^{0}_{-\infty}-e^{-(2+a)t}e^{-jwt}dt</math>
 +
 +
:<math>X(s) = -\frac{e^{-(2+a)t}e^{-jwt}}{-(2+a+jw)}

Revision as of 13:09, 23 November 2008

This page shows an example of LT transform computation

let $ x(t) = -e^{-2t}u(-t) $

then

$ X(s) = \int^{\infty}_{-\infty}x(t)e^{-st}dt $
$ X(s) = \int^{\infty}_{-\infty}-e^{-2t}u(-t)e^{-st}dt $
$ X(s) = \int^{0}_{-\infty}-e^{-2t}e^{-st}dt $

Now let $ s = a + jw $

$ X(s) = \int^{0}_{-\infty}-e^{-2t}e^{-(a+jw)t}dt $
$ X(s) = \int^{0}_{-\infty}-e^{-(2+a)t}e^{-jwt}dt $
$ X(s) = -\frac{e^{-(2+a)t}e^{-jwt}}{-(2+a+jw)} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett