Line 10: | Line 10: | ||
<math>X(s)= \int_{-\infty}^{\infty}{e^{-at}}{e^{-st}}dt ,\mathit{u} (t)=1,t>0</math> | <math>X(s)= \int_{-\infty}^{\infty}{e^{-at}}{e^{-st}}dt ,\mathit{u} (t)=1,t>0</math> | ||
+ | |||
+ | <math>X(s)= \frac{1}{s+a}</math> |
Revision as of 11:26, 19 November 2008
== Fundamentals of Laplace Transform ==
Let the signal be:
$ x(t) =e^ {-at} \mathit{u} (t) $
On doin a Laplace Transform
$ X(s)= \int_{-\infty}^{\infty}x(t){e^{-st}}\, dt $
$ X(s)= \int_{-\infty}^{\infty}{e^{-at}}{e^{-st}}dt ,\mathit{u} (t)=1,t>0 $
$ X(s)= \frac{1}{s+a} $