Line 9: Line 9:
 
       <math>X(s)= \int_{-\infty}^{\infty}x(t){e^{-st}}\, dt</math>
 
       <math>X(s)= \int_{-\infty}^{\infty}x(t){e^{-st}}\, dt</math>
  
       <math>X(s)= \int_{-\infty}^{\infty}{e^{-at}}{e^{-st},dt \mathit{u} (t) =1  t>0  </math>
+
       <math>X(s)= \int_{-\infty}^{\infty}{e^{-at}}{e^{-st},dt</math>

Revision as of 11:22, 19 November 2008

                             == Fundamentals of Laplace Transform ==
     Let the signal be:
     $ x(t) =e^ {-at} \mathit{u} (t) $
     
     On doin a Laplace Transform
     $ X(s)= \int_{-\infty}^{\infty}x(t){e^{-st}}\, dt $
     $ X(s)= \int_{-\infty}^{\infty}{e^{-at}}{e^{-st},dt $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009