Line 12: Line 12:
 
using trigonometric identity,
 
using trigonometric identity,
  
<math>cos^2{w_{c}t}=\frac{1}{2}x(t)+\frac{1}{2}x(t)cos{2w_{c}t}</math>
+
<math>cos^2{w_{c}t}=\frac{1}{2}+\frac{1}{2}cos{2w_{c}t}</math>
 +
 
 +
<math>w(t)=\frac{1}{2}x(t)+\frac{1}{2}x(t)cos{2w_{c}t}</math>

Revision as of 17:50, 17 November 2008

DEMODULATION FOR SINUSOIDAL AM

$ y(t) = x(t)cos{w_{c}t} $

the original signal can be recovered by modulating y(t) with the same sinusoidal carrier and applying a lowpass filter to the result.

consider,

$ w(t) = y(t)cos{w_{c}t} $

$ w(t) = x(t)cos^2{w_{c}t} $

using trigonometric identity,

$ cos^2{w_{c}t}=\frac{1}{2}+\frac{1}{2}cos{2w_{c}t} $

$ w(t)=\frac{1}{2}x(t)+\frac{1}{2}x(t)cos{2w_{c}t} $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison