(New page: Cumulative Density Function (CDF) * FX(x) = P(X <= x) = integral(-inf to inf) fX(y) dy * 1 - FX(x) = P(X > x))
 
Line 2: Line 2:
 
* FX(x) = P(X <= x) = integral(-inf to inf) fX(y) dy
 
* FX(x) = P(X <= x) = integral(-inf to inf) fX(y) dy
 
* 1 - FX(x) = P(X > x)
 
* 1 - FX(x) = P(X > x)
 +
 +
 +
Exponential RV
 +
 +
PDF: f<sub>X</sub>(x) = <math>\lambda</math>*e^(-<math>\lambda</math>*x)  x >= 0 , f<sub>X</sub>(x) = 0  else
 +
 +
CDF: F<sub>X</sub>(x) = 1-e^(-<math>\lambda</math>*x)

Revision as of 15:50, 19 October 2008

Cumulative Density Function (CDF)

  • FX(x) = P(X <= x) = integral(-inf to inf) fX(y) dy
  • 1 - FX(x) = P(X > x)


Exponential RV

PDF: fX(x) = $ \lambda $*e^(-$ \lambda $*x) x >= 0 , fX(x) = 0 else

CDF: FX(x) = 1-e^(-$ \lambda $*x)

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett