(Impulse-Train Sampling)
Line 30: Line 30:
  
 
Let <math>p(t) = \sum_{n = -\infty}^\infty \delta(t - nT)</math>
 
Let <math>p(t) = \sum_{n = -\infty}^\infty \delta(t - nT)</math>
 +
 +
<math>x(t)p(t) = x_p(t)</math>

Revision as of 11:30, 10 November 2008

Sampling Theorem

Let $ \omega_m $ be a non-negative number.

Let $ x(t) $ be a signal with $ X(\omega) = 0 $ when $ |\omega| > \omega_m $.

Consider the samples $ x(nT) $ for $ n = 0, +-1, +-2, ... $

If $ T < \frac{1}{2}(\frac{2\pi}{\omega_m}) $ then $ x(t) $ can be uniquely recovered from its samples.


Variable Definitions

$ T $ Sampling Period

$ \frac{2\pi}{T} = \omega_s $ Sampling Frequency

$ T < \frac{1}{2}(\frac{2\pi}{\omega_m}) <==> \omega_s>2\omega_m $

$ \omega_m $ Maximum frequencye for a band limited signal

$ NQ = 2\omega_m $ Nyquist Rate - The frequencye the sampling frequency should be, or greater.

$ \omega_c $ Cut off frequency for a filter


Impulse-Train Sampling

Let $ x(t) $ be a continuous signal

Let $ p(t) = \sum_{n = -\infty}^\infty \delta(t - nT) $

$ x(t)p(t) = x_p(t) $

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics