(Brian Thomas Rhea HW8)
 
(Brian Thomas, Rhea HW9 (part 1))
Line 8: Line 8:
 
*NR, or "Nyquest Rate": <math>=2\omega_m</math>.  If <math>\omega_s > NR = 2\omega_m</math>, then the band-limited signal can be uniquely reconstructed from the sampled signal.
 
*NR, or "Nyquest Rate": <math>=2\omega_m</math>.  If <math>\omega_s > NR = 2\omega_m</math>, then the band-limited signal can be uniquely reconstructed from the sampled signal.
 
*<math>p(t)</math>: "Impulse train" -- equivalent to <math>\sum_{n=-\infty}^{\infty} \delta(t-nT)</math>
 
*<math>p(t)</math>: "Impulse train" -- equivalent to <math>\sum_{n=-\infty}^{\infty} \delta(t-nT)</math>
 +
 +
==Chapter 8: Laplace Transforms==
 +
*<math>s</math>: A complex number -- often expressed as a sum of it's parts, <math>a+j\omega</math>, where <math>a, \omega \in \mathbb{R}</math>

Revision as of 18:16, 17 November 2008

So many symbols, so little time... Here's a quick lookup table for our commonly-used symbols!

Chapter 7

  • $ \omega_s $: Sampling frequency; equal to $ \frac{2\pi}{T} $
  • $ \omega_m $: Maximum frequency in a band-limited signal ($ = max(\{|w|\ :\ w \neq 0\}) $
  • $ \omega_c $: Cutoff frequency of a filter ($ \omega_c > 0 $). (For instance, lowpass filters are nonzero in the range $ \omega \in [-\omega_c, \omega_c] $.)
  • $ T $: Sampling period; equal to $ \frac{2\pi}{\omega_s} $
  • NR, or "Nyquest Rate": $ =2\omega_m $. If $ \omega_s > NR = 2\omega_m $, then the band-limited signal can be uniquely reconstructed from the sampled signal.
  • $ p(t) $: "Impulse train" -- equivalent to $ \sum_{n=-\infty}^{\infty} \delta(t-nT) $

Chapter 8: Laplace Transforms

  • $ s $: A complex number -- often expressed as a sum of it's parts, $ a+j\omega $, where $ a, \omega \in \mathbb{R} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett