(Methods to recover a signal)
(Methods to recover a signal)
Line 5: Line 5:
 
<math>x(t)= \sum^{\infty}_{k = -\infty} x(kT) (u[t-kT]-u[t-(k+1)T])</math>
 
<math>x(t)= \sum^{\infty}_{k = -\infty} x(kT) (u[t-kT]-u[t-(k+1)T])</math>
  
[[Image:Image:Zero_order.jpg._ECE301Fall2008mboutin]]  
+
[[Image:/Zero_order.jpg._ECE301Fall2008mboutin]]  
  
 
2. First-order intapolation
 
2. First-order intapolation
Line 13: Line 13:
 
where <math>f_k (t)= x(t_k) + (t-t_k) \frac {x(t_{k+1})-x(t_k)}{t_{k+1} - t_k}  for t_k < t < t_{k+1} </math>  
 
where <math>f_k (t)= x(t_k) + (t-t_k) \frac {x(t_{k+1})-x(t_k)}{t_{k+1} - t_k}  for t_k < t < t_{k+1} </math>  
  
[[Image:First_order.jpg._ECE301Fall2008mboutin]]
+
[[Image:/First_order.jpg._ECE301Fall2008mboutin]]

Revision as of 09:25, 10 November 2008

Methods to recover a signal

1. Zero-order intapolation (step function)

$ x(t)= \sum^{\infty}_{k = -\infty} x(kT) (u[t-kT]-u[t-(k+1)T]) $

File:/Zero order.jpg. ECE301Fall2008mboutin

2. First-order intapolation

$ x(t)= \sum^{\infty}_{k = -\infty} f_k (t) $

where $ f_k (t)= x(t_k) + (t-t_k) \frac {x(t_{k+1})-x(t_k)}{t_{k+1} - t_k} for t_k < t < t_{k+1} $

File:/First order.jpg. ECE301Fall2008mboutin

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett