(New page: To be updated)
 
Line 1: Line 1:
To be updated
+
=== Methods to recover a signal ===
 +
 
 +
1. Zero-order intapolation (step function)
 +
 
 +
<math>x(t)= \sum^{\infty}_{k = -\infty} x(kT) {u(t-kT)-u[t-(k+1)T]}</math>
 +
 
 +
[[Image:Zero_order.jpg._ECE301Fall2008mboutin]]
 +
 
 +
2. First-order intapolation
 +
 
 +
<math>x(t)= \sum^{\infty}_{k = -\infty} f_k (t) </math>
 +
 
 +
where <math>f_k (t)= x(t_k) + (t-t_k) \frac {x(t_k+1)-x(t_k}{t_k+1 - t_k} for t_k < t < t_k+1 </math>
 +
 
 +
[[Image:First_order.jpg._ECE301Fall2008mboutin]]

Revision as of 09:18, 10 November 2008

Methods to recover a signal

1. Zero-order intapolation (step function)

$ x(t)= \sum^{\infty}_{k = -\infty} x(kT) {u(t-kT)-u[t-(k+1)T]} $

File:Zero order.jpg. ECE301Fall2008mboutin

2. First-order intapolation

$ x(t)= \sum^{\infty}_{k = -\infty} f_k (t) $

where $ f_k (t)= x(t_k) + (t-t_k) \frac {x(t_k+1)-x(t_k}{t_k+1 - t_k} for t_k < t < t_k+1 $

File:First order.jpg. ECE301Fall2008mboutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett