Line 3: | Line 3: | ||
<math> x(t) = \delta (t+1) + \delta (t-1) </math> | <math> x(t) = \delta (t+1) + \delta (t-1) </math> | ||
− | <math> X(\omega) = \int_{-\infty}^{\infty} \delta (t+1)e^{-j \omega t} </math> | + | <math> X(\omega) = \int_{-\infty}^{\infty} \delta (t+1)e^{-j \omega t} + \int_{-\infty}^{\infty} \delta (t-1)e^{-j \omega t} dt </math> |
Revision as of 17:06, 24 October 2008
Fourier Transform of delta functions
$ x(t) = \delta (t+1) + \delta (t-1) $
$ X(\omega) = \int_{-\infty}^{\infty} \delta (t+1)e^{-j \omega t} + \int_{-\infty}^{\infty} \delta (t-1)e^{-j \omega t} dt $