(Y(jw)=H(jw)X(jw))
Line 2: Line 2:
 
<math> \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} </math>
 
<math> \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} </math>
  
=<math>Y(jw)=H(jw)X(jw)</math>=
+
=<math>Y(jw)=H(jw)X(jw)H(jw)=\frac{Y(jw)}{X(jw)}</math>
<math>H(jw)=\frac{Y(jw)}{X(jw)}</math>
+

Revision as of 16:29, 24 October 2008

System Characterized By Linear Constant-Coefficient Differential Equations

$ \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} $

=$ Y(jw)=H(jw)X(jw), H(jw)=\frac{Y(jw)}{X(jw)} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang