(→Y(jw)=H(jw)X(jw)) |
|||
Line 2: | Line 2: | ||
<math> \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} </math> | <math> \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} </math> | ||
− | =<math>Y(jw)=H(jw)X(jw) | + | =<math>Y(jw)=H(jw)X(jw), H(jw)=\frac{Y(jw)}{X(jw)}</math> |
− | + |
Revision as of 16:29, 24 October 2008
System Characterized By Linear Constant-Coefficient Differential Equations
$ \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} $
=$ Y(jw)=H(jw)X(jw), H(jw)=\frac{Y(jw)}{X(jw)} $