(New page: Given X~exp(<math>lambda</math>) CDF of X = 1 - exp(-lambda*x) = P[X<=x] P[X>x] = exp(-lambda*x) P[Y>k] = P[X>k] = exp(-lambda*k) P[Y>k] = P[Y=k+1] + P[Y=k+2] + ... -- (1) P[Y>k-1] = P[...)
 
 
Line 1: Line 1:
 
Given X~exp(<math>lambda</math>)
 
Given X~exp(<math>lambda</math>)
 +
 
CDF of X = 1 - exp(-lambda*x) = P[X<=x]
 
CDF of X = 1 - exp(-lambda*x) = P[X<=x]
 +
 
P[X>x] = exp(-lambda*x)
 
P[X>x] = exp(-lambda*x)
 +
 
P[Y>k] = P[X>k] = exp(-lambda*k)
 
P[Y>k] = P[X>k] = exp(-lambda*k)
 +
  
 
P[Y>k] = P[Y=k+1] + P[Y=k+2] + ...  -- (1)
 
P[Y>k] = P[Y=k+1] + P[Y=k+2] + ...  -- (1)
 +
 
P[Y>k-1] = P[Y=k] + P[Y=k+1] + P[Y=k+2] + ...  -- (2)
 
P[Y>k-1] = P[Y=k] + P[Y=k+1] + P[Y=k+2] + ...  -- (2)
 +
 
         = P[Y=k] + P[Y>k]
 
         = P[Y=k] + P[Y>k]
 +
 
then find P[Y=k] ...
 
then find P[Y=k] ...
 +
  
 
Alternatively, without using the hint given, we can also approach the problem using the PDF of X  
 
Alternatively, without using the hint given, we can also approach the problem using the PDF of X  
 +
 
PDF of X = lambda*exp(-lambda*x)
 
PDF of X = lambda*exp(-lambda*x)
 +
 
For Y to have a value k (k is integer), X has to fall within the range of k-1 to k
 
For Y to have a value k (k is integer), X has to fall within the range of k-1 to k
 +
 
P[Y=k] = P[k-1<X<k]
 
P[Y=k] = P[k-1<X<k]
 +
 
       = (integ:k-1 to k) lambda*exp(-lambda*x) dx = ...
 
       = (integ:k-1 to k) lambda*exp(-lambda*x) dx = ...
 +
  
 
Both methods should lead to the same answer.
 
Both methods should lead to the same answer.

Latest revision as of 15:34, 15 October 2008

Given X~exp($ lambda $)

CDF of X = 1 - exp(-lambda*x) = P[X<=x]

P[X>x] = exp(-lambda*x)

P[Y>k] = P[X>k] = exp(-lambda*k)


P[Y>k] = P[Y=k+1] + P[Y=k+2] + ... -- (1)

P[Y>k-1] = P[Y=k] + P[Y=k+1] + P[Y=k+2] + ... -- (2)

        = P[Y=k] + P[Y>k]

then find P[Y=k] ...


Alternatively, without using the hint given, we can also approach the problem using the PDF of X

PDF of X = lambda*exp(-lambda*x)

For Y to have a value k (k is integer), X has to fall within the range of k-1 to k

P[Y=k] = P[k-1<X<k]

      = (integ:k-1 to k) lambda*exp(-lambda*x) dx = ...


Both methods should lead to the same answer.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang