Line 2: | Line 2: | ||
Compute the Fourier Transform of <math>x(t)=e^{-t}u(t)</math>. | Compute the Fourier Transform of <math>x(t)=e^{-t}u(t)</math>. | ||
− | <math> | + | <math>\chi(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt</math> |
<math>=\int_{-\infty}^{\infty}e^{-t}u(t)e^{-j\omega t}dt</math> | <math>=\int_{-\infty}^{\infty}e^{-t}u(t)e^{-j\omega t}dt</math> | ||
Line 16: | Line 16: | ||
<math>=0+\frac {1}{(1+j\omega)}</math> | <math>=0+\frac {1}{(1+j\omega)}</math> | ||
− | <math>=\frac {1}{ | + | <math>=\frac {1}{1+j\omega}</math> |
+ | |||
==Example 2== | ==Example 2== | ||
+ | The impulse response of an LTI system is <math>h(t)=e^{-2t}u(t)+u(t+2)-u(t-2)</math>. | ||
+ | What is the Frequency response <math>H(j\omega)</math> of the system? | ||
+ | |||
+ | <math>H(j\omega)=H(\omega)=\int_{-\infty}^{\infty}h(t)e^{-j\omega t}dt=\int_{-\infty}^{\infty}(e^{-2t}u(t)+u(t+2)-u(t-2))e^{-j\omega t}dt=\int_{-\infty}^{\infty}e^{-2t}u(t)e^{-j\omega t}dt+\int_{-\infty}^{\infty}u(t+2)e^{-j\omega t}dt-\int_{-\infty}^{\infty}u(t-2)e^{-j\omega t}dt</math> | ||
+ | |||
+ | Using the previous example and the time shifting property, | ||
+ | |||
+ | <math>H(j\omega)=\frac {1}{2+j\omega}+\frac {2sin(2\omega)}{\omega}</math> | ||
+ | |||
+ | ==Example 3== | ||
+ | What is the Fourier Transform of the signal <math>x(t)=e^{j\omega _0t}</math>? | ||
+ | |||
+ | To solve this look at the the inverse Fourier transform, but the inverse transform of what? | ||
+ | |||
+ | Take <math>\chi(\omega)=2\pi\delta(\omega-\omega _0)</math> | ||
+ | |||
+ | <math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\chi (\omega)e^{j\omega t}d\omega</math> | ||
+ | <math>=\frac{1}{2\pi}\int_{-\infty}^{\infty}2\pi\delta(\omega-\omega _0)e^{j\omega t}d\omega</math> | ||
+ | <math>=\int_{-\infty}^{\infty}\delta(\omega-\omega _0)e^{j\omega t}d\omega</math> | ||
+ | |||
+ | by sifting property, | ||
+ | |||
+ | <math>\int_{-\infty}^{\infty}\delta(\omega-\omega _0)e^{j\omega t}d\omega=e^{j\omega t}|_{\omega=\omega _0}</math> | ||
+ | |||
+ | <math>x(t)=e^{j\omega _0 t}</math> | ||
+ | |||
+ | Thus, the fourier transform of <math>x(t)=e^{j\omega _0t}</math> is <math>\chi(\omega)=2\pi\delta(\omega-\omega _0)</math>. | ||
+ | ==Example 4== | ||
+ | Show that the Fourier transform of <math>x(t)=cos(2\pi t)</math> is <math>\chi (\omega)=\pi\delta(\omega+2\pi)+\pi\delta(\omega-2\pi)</math>. |
Revision as of 11:20, 21 October 2008
Contents
Example 1
Compute the Fourier Transform of $ x(t)=e^{-t}u(t) $.
$ \chi(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $
$ =\int_{-\infty}^{\infty}e^{-t}u(t)e^{-j\omega t}dt $
$ =\int_{0}^{\infty}e^{-t}e^{-j\omega t}dt $
$ =\int_{0}^{\infty}e^{-(1+j\omega )t}dt $
$ =[\frac {e^{-(1+j\omega )t}}{-(1+j\omega)}]|_0^\infty $
$ =\frac {e^{-(1+j\omega )\infty}}{-(1+j\omega)}-\frac {e^{-(1+j\omega )0}}{-(1+j\omega)} $
$ =0+\frac {1}{(1+j\omega)} $
$ =\frac {1}{1+j\omega} $
Example 2
The impulse response of an LTI system is $ h(t)=e^{-2t}u(t)+u(t+2)-u(t-2) $. What is the Frequency response $ H(j\omega) $ of the system?
$ H(j\omega)=H(\omega)=\int_{-\infty}^{\infty}h(t)e^{-j\omega t}dt=\int_{-\infty}^{\infty}(e^{-2t}u(t)+u(t+2)-u(t-2))e^{-j\omega t}dt=\int_{-\infty}^{\infty}e^{-2t}u(t)e^{-j\omega t}dt+\int_{-\infty}^{\infty}u(t+2)e^{-j\omega t}dt-\int_{-\infty}^{\infty}u(t-2)e^{-j\omega t}dt $
Using the previous example and the time shifting property,
$ H(j\omega)=\frac {1}{2+j\omega}+\frac {2sin(2\omega)}{\omega} $
Example 3
What is the Fourier Transform of the signal $ x(t)=e^{j\omega _0t} $?
To solve this look at the the inverse Fourier transform, but the inverse transform of what?
Take $ \chi(\omega)=2\pi\delta(\omega-\omega _0) $
$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\chi (\omega)e^{j\omega t}d\omega $ $ =\frac{1}{2\pi}\int_{-\infty}^{\infty}2\pi\delta(\omega-\omega _0)e^{j\omega t}d\omega $ $ =\int_{-\infty}^{\infty}\delta(\omega-\omega _0)e^{j\omega t}d\omega $
by sifting property,
$ \int_{-\infty}^{\infty}\delta(\omega-\omega _0)e^{j\omega t}d\omega=e^{j\omega t}|_{\omega=\omega _0} $
$ x(t)=e^{j\omega _0 t} $
Thus, the fourier transform of $ x(t)=e^{j\omega _0t} $ is $ \chi(\omega)=2\pi\delta(\omega-\omega _0) $.
Example 4
Show that the Fourier transform of $ x(t)=cos(2\pi t) $ is $ \chi (\omega)=\pi\delta(\omega+2\pi)+\pi\delta(\omega-2\pi) $.