(New page: ==Example 1== Compute the Fourier Transform of <math>x(t)=e^{-t}u(t)</math>. <math>X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt</math> <math>=\int_{-\infty}^{\infty}e^{-t}u(t)e^{...)
 
(Example 1)
Line 3: Line 3:
  
 
<math>X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt</math>
 
<math>X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt</math>
 +
 
<math>=\int_{-\infty}^{\infty}e^{-t}u(t)e^{-j\omega t}dt</math>
 
<math>=\int_{-\infty}^{\infty}e^{-t}u(t)e^{-j\omega t}dt</math>
 +
 
<math>=\int_{0}^{\infty}e^{-t}e^{-j\omega t}dt</math>
 
<math>=\int_{0}^{\infty}e^{-t}e^{-j\omega t}dt</math>
 +
 
<math>=\int_{0}^{\infty}e^{-(1+j\omega )t}dt</math>
 
<math>=\int_{0}^{\infty}e^{-(1+j\omega )t}dt</math>
 +
 
<math>=[\frac {e^{-(1+j\omega )t}}{-(1+j\omega)}]|_0^\infty</math>
 
<math>=[\frac {e^{-(1+j\omega )t}}{-(1+j\omega)}]|_0^\infty</math>
<math>X(\omega)=\frac {e^{-(1+j\omega )\infty}}{-(1+j\omega)}-\frac {e^{-(1+j\omega )0}}{-(1+j\omega)}</math>
+
 
<math>=0-\frac {1}{-(1+j\omega)}</math>
+
<math>=\frac {e^{-(1+j\omega )\infty}}{-(1+j\omega)}-\frac {e^{-(1+j\omega )0}}{-(1+j\omega)}</math>
 +
 
 +
<math>=0+\frac {1}{(1+j\omega)}</math>
 +
 
 
<math>=\frac {1}{(1+j\omega)}</math>
 
<math>=\frac {1}{(1+j\omega)}</math>
 +
==Example 2==
 +
 
==Example 2==
 
==Example 2==

Revision as of 18:05, 20 October 2008

Example 1

Compute the Fourier Transform of $ x(t)=e^{-t}u(t) $.

$ X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

$ =\int_{-\infty}^{\infty}e^{-t}u(t)e^{-j\omega t}dt $

$ =\int_{0}^{\infty}e^{-t}e^{-j\omega t}dt $

$ =\int_{0}^{\infty}e^{-(1+j\omega )t}dt $

$ =[\frac {e^{-(1+j\omega )t}}{-(1+j\omega)}]|_0^\infty $

$ =\frac {e^{-(1+j\omega )\infty}}{-(1+j\omega)}-\frac {e^{-(1+j\omega )0}}{-(1+j\omega)} $

$ =0+\frac {1}{(1+j\omega)} $

$ =\frac {1}{(1+j\omega)} $

Example 2

Example 2

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn