(Problem 5)
(Problem 5)
Line 9: Line 9:
 
<math>H(z)=\sum_{k=-\infty}^{\infty}(u[k]-u[k-2])z^{-k}</math>
 
<math>H(z)=\sum_{k=-\infty}^{\infty}(u[k]-u[k-2])z^{-k}</math>
  
<math>u[k]={ 1, k > 0
+
u[k]= 1, k > 0 and  0, else
            0, else}   
+
</math>
+
  
 +
u[k-2]= 1, k > 0 and 0, else
 +
 +
h[n] is 1 between 0 and 1; and 0 elsewhere
  
 
<math>H(z)=\sum_{k=0}^{1}z^{-k}</math>
 
<math>H(z)=\sum_{k=0}^{1}z^{-k}</math>
  
  
 
+
<math>H(z)= 1*z^{-0} + 1*z^{-1}</math>
  
  
 
b) the system's response to the input <math>x[n]=\cos(\pi n)</math>.
 
b) the system's response to the input <math>x[n]=\cos(\pi n)</math>.
 +
 +
 +
<math>\cos(\pi n)=(-1)^n</math>
 +
 +
 +
<math> Y(n)= H(-1)*(-1)^n </math>

Revision as of 15:11, 15 October 2008

Problem 5

An LTI system has unit impulse response h[n] = u[n] - u[n-2].

a) Compute the system's function H(z).


$ H(z)=\sum_{k=-\infty}^{\infty}h[k]z^{-k} $

$ H(z)=\sum_{k=-\infty}^{\infty}(u[k]-u[k-2])z^{-k} $

u[k]= 1, k > 0 and 0, else

u[k-2]= 1, k > 0 and 0, else

h[n] is 1 between 0 and 1; and 0 elsewhere

$ H(z)=\sum_{k=0}^{1}z^{-k} $


$ H(z)= 1*z^{-0} + 1*z^{-1} $


b) the system's response to the input $ x[n]=\cos(\pi n) $.


$ \cos(\pi n)=(-1)^n $


$ Y(n)= H(-1)*(-1)^n $

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics