(→solution) |
(→solution) |
||
Line 17: | Line 17: | ||
<math> \sum^{0}_{k=n}2^{k}, n<=0</math> | <math> \sum^{0}_{k=n}2^{k}, n<=0</math> | ||
+ | 0, else | ||
+ | |||
+ | let r=-k, k=-r | ||
+ | |||
+ | <math> \sum^{-n)_{r=0}, n<=0 </math> | ||
0, else | 0, else |
Revision as of 09:51, 15 October 2008
question
3. An LTI system has unit impulse response $ h[n]=u[-n] $ Compute the system's response to the input $ x[n]=2^{n}u[-n]. $(Simplify your answer until all \sum signs disappear.)
solution
$ y[n]=x[n]*h[n] $
$ y[n]=\sum^{\infty}_{k=-\infty}x[n]*h[n-k] $
$ y[n]=\sum^{\infty}_{k=-\infty}2^{k}u[-k]u[n-k] $
n[-k] = 1 ,-k>=0
k<=0
$ y[n]=\sum^{0}_{k=-\infty}2^{k}u[n-k] $
$ \sum^{0}_{k=n}2^{k}, n<=0 $
0, else
let r=-k, k=-r
$ \sum^{-n)_{r=0}, n<=0 $ 0, else