(New page: <math>\frac {1}{T} \int_{0}^{T}|x(t)|^2 dt = \sum_{k=-\infty}{infty}|a_k|^2</math>)
 
Line 1: Line 1:
<math>\frac {1}{T} \int_{0}^{T}|x(t)|^2 dt = \sum_{k=-\infty}{infty}|a_k|^2</math>
+
<math>\frac {1}{T} \int_{0}^{T}|x(t)|^2 dt = \sum_{k=-\infty}^{\infty}|a_k|^2</math>

Revision as of 11:55, 15 October 2008

$ \frac {1}{T} \int_{0}^{T}|x(t)|^2 dt = \sum_{k=-\infty}^{\infty}|a_k|^2 $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood