(New page: <math></math>)
 
 
Line 1: Line 1:
<math></math>
+
<math>x(t)=\sum_{k=-\infty}^\infty k = \frac{1}{(t+2k)^2+1}</math>  periodic?
 +
 
 +
Yes it is periodic
 +
 
 +
<math>x(t+2)=\sum_{k=-\infty}^\infty k \frac{1}{(t+2+2k)^2+1}</math>
 +
 
 +
<math>=\sum_{k=-\infty}^\infty k \frac{1}{(t+2+2k)^2+1}</math>
 +
 
 +
<math>=\sum_{k=-\infty}^\infty k \frac{1}{(t+2(k+1))^2+1}</math>
 +
(Assume R = k+1)
 +
 
 +
<math>=\sum_{k=-\infty}^\infty k = \frac{1}{(t+2R)^2+1}</math>
 +
 
 +
<math>=\text{x(t+2)}</math>

Latest revision as of 06:29, 17 October 2008

$ x(t)=\sum_{k=-\infty}^\infty k = \frac{1}{(t+2k)^2+1} $ periodic?

Yes it is periodic

$ x(t+2)=\sum_{k=-\infty}^\infty k \frac{1}{(t+2+2k)^2+1} $

$ =\sum_{k=-\infty}^\infty k \frac{1}{(t+2+2k)^2+1} $

$ =\sum_{k=-\infty}^\infty k \frac{1}{(t+2(k+1))^2+1} $ (Assume R = k+1)

$ =\sum_{k=-\infty}^\infty k = \frac{1}{(t+2R)^2+1} $

$ =\text{x(t+2)} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett