(New page: If <math>\{a_1,a_2,...,a_n\}</math> is arithmetic, then <math>\sum_{i=1}^n a_i = \frac{n(a_1 + a_n)}{2}</math>) |
m |
||
Line 1: | Line 1: | ||
− | If <math>\{a_1,a_2,...,a_n\}</math> is arithmetic, then <math>\sum_{i=1}^n a_i = \frac{n(a_1 + a_n)}{2}</math> | + | If <math>\{a_1,a_2,...,a_n\}</math> is an arithmetic series, then <math>\sum_{i=1}^n a_i = \frac{n(a_1 + a_n)}{2}</math> |
Latest revision as of 14:23, 9 October 2008
If $ \{a_1,a_2,...,a_n\} $ is an arithmetic series, then $ \sum_{i=1}^n a_i = \frac{n(a_1 + a_n)}{2} $