Line 1: Line 1:
(1) <math>\frac{dx(t)}{dt} \rightarrow j\omega \Chi (\omega)</math>\; \; \; \; \; \; (2) <math>\int_{-\infty}^{t}x(\tau)d\tau \rightarrow \frac{1}{j\omega}\Chi (\omega) + \pi \Chi (0) \delta (\omega)</math>
+
<math>\; \; \; (1)\frac{dx(t)}{dt} \rightarrow j\omega \Chi (\omega)\; \; \; \; \; \; (2) \int_{-\infty}^{t}x(\tau)d\tau \rightarrow \frac{1}{j\omega}\Chi (\omega) + \pi \Chi (0) \delta (\omega)</math>

Latest revision as of 18:20, 8 October 2008

$ \; \; \; (1)\frac{dx(t)}{dt} \rightarrow j\omega \Chi (\omega)\; \; \; \; \; \; (2) \int_{-\infty}^{t}x(\tau)d\tau \rightarrow \frac{1}{j\omega}\Chi (\omega) + \pi \Chi (0) \delta (\omega) $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman