Line 1: Line 1:
(1) <math>\frac{dx(t)}{dt} \rightarrow j\omega \Chi (\omega)</math> (2) <math>\int_{-\infty}^{t}x(\tau)d\tau \rightarrow \frac{1}{j\omega}\Chi (\omega) + \pi \Chi (0) \delta (\omega)</math>
+
(1) <math>\frac{dx(t)}{dt} \rightarrow j\omega \Chi (\omega)</math>         (2) <math>\int_{-\infty}^{t}x(\tau)d\tau \rightarrow \frac{1}{j\omega}\Chi (\omega) + \pi \Chi (0) \delta (\omega)</math>

Revision as of 18:19, 8 October 2008

(1) $ \frac{dx(t)}{dt} \rightarrow j\omega \Chi (\omega) $ (2) $ \int_{-\infty}^{t}x(\tau)d\tau \rightarrow \frac{1}{j\omega}\Chi (\omega) + \pi \Chi (0) \delta (\omega) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett