(→Inverse Fourier Transform) |
|||
Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier transform]] | ||
+ | [[Category:inverse Fourier transform]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of inverse Fourier transform (CT signals) == | ||
+ | A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]] | ||
+ | ---- | ||
== Inverse Fourier Transform == | == Inverse Fourier Transform == | ||
Line 11: | Line 20: | ||
<math> x[n] = e^{j\pi t} </math> | <math> x[n] = e^{j\pi t} </math> | ||
+ | |||
+ | ---- | ||
+ | [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] |
Latest revision as of 11:49, 16 September 2013
Example of Computation of inverse Fourier transform (CT signals)
A practice problem on CT Fourier transform
Inverse Fourier Transform
$ \chi(\omega) = 2 \pi \sigma (\omega - \pi) $
$ x[n] = \frac{1}{2\pi}\int_{-\infty}^{\infty} 2\pi \delta (\omega - \pi)e^{j\omega t} dw $
$ x[n] = \int_{-\infty}^\infty \delta (\omega - \pi)e^{j\omega t} dw $
$ x[n] = \int_{\pi} e^{j\omega t} dw $
$ x[n] = e^{j\pi t} $