Line 2: | Line 2: | ||
− | <math> \chi(\omega) = 2\pi \sigma(\omega - \pi) < | + | <math> \chi (\omega) = 2 \pi \sigma (\omega - \pi) </math> |
<math> x[n] = frac{1}{2\pi}\int_{-\infty}^{\infty} \delta (\omega - \pi)e^{j\omega t} dw </math> | <math> x[n] = frac{1}{2\pi}\int_{-\infty}^{\infty} \delta (\omega - \pi)e^{j\omega t} dw </math> | ||
<math> x[n] = \int_{-\infty}^\infty \delta (\omega - \pi)e^{j\omega t} dw </math> | <math> x[n] = \int_{-\infty}^\infty \delta (\omega - \pi)e^{j\omega t} dw </math> |
Revision as of 18:02, 8 October 2008
Inverse Fourier Transform
$ \chi (\omega) = 2 \pi \sigma (\omega - \pi) $
$ x[n] = frac{1}{2\pi}\int_{-\infty}^{\infty} \delta (\omega - \pi)e^{j\omega t} dw $
$ x[n] = \int_{-\infty}^\infty \delta (\omega - \pi)e^{j\omega t} dw $