Line 1: Line 1:
 
<math> X(\omega) = 2\delta (\omega - 3) + 7\pi \delta(\omega - 1) \!</math>
 
<math> X(\omega) = 2\delta (\omega - 3) + 7\pi \delta(\omega - 1) \!</math>
IFT:
+
,IFT:
 
<math> x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega )e^{j\omega t} d\omega \!</math>
 
<math> x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega )e^{j\omega t} d\omega \!</math>
  

Revision as of 18:00, 8 October 2008

$ X(\omega) = 2\delta (\omega - 3) + 7\pi \delta(\omega - 1) \! $ ,IFT: $ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega )e^{j\omega t} d\omega \! $

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\delta (\omega -3)e^{j\omega t} d\omega + \frac{1}{2\pi} \int_{-\infty}^{\infty} 7\pi \delta (\omega -1)e^{j\omega t} d\omega \! $

$ \int_{-\infty}^{\infty} \delta (\omega -t_0) e^{jwt} d\omega = e^{jt_0 t} \! $

$ x(t) = \frac{2}{2\pi }e^{3jt} + \frac{7\pi }{2\pi }e^{jt} \! $

$ x(t) = \frac{1}{\pi }e^{3jt} + \frac{7}{2}e^{jt} \! $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva