Line 5: Line 5:
 
From the problem statement we know that T=4
 
From the problem statement we know that T=4
  
<math>= \frac{1}{4} \int_{0}^{4}x(t)e^{-jk\frac{2\pi}{4}}dt</math>
+
<math>= \frac{1}{4} \int_{0}^{4}x(t)e^{-jk\frac{2\pi}{4}t}dt</math>
  
 
Knowing that T=4 we can visualize the periodic signal in the range <math>0 \leq t \leq 4</math>. x(t) = 1 for <math>0 \leq t \leq 1</math> and <math>3 \leq t \leq 4</math>. Otherwise, x(t) = 0. Therefore:
 
Knowing that T=4 we can visualize the periodic signal in the range <math>0 \leq t \leq 4</math>. x(t) = 1 for <math>0 \leq t \leq 1</math> and <math>3 \leq t \leq 4</math>. Otherwise, x(t) = 0. Therefore:
  
<math>= \frac{1}{4} \int_{0}^{1}e^{-jk\frac{\pi}{2}}dt + \frac{1}{4} \int_{3}^{4}e^{-jk\frac{\pi}{2}}dt</math>
+
<math>= \frac{1}{4} \int_{0}^{1}e^{-jk\frac{\pi}{2}t}dt + \frac{1}{4} \int_{3}^{4}e^{-jk\frac{\pi}{2}t}dt</math>

Revision as of 17:28, 8 October 2008

Test Problem 4

$ a_{k} = \frac{1}{T} \int_{0}^{T}x(t)e^{-jk\omega _{o}t}dt $

From the problem statement we know that T=4

$ = \frac{1}{4} \int_{0}^{4}x(t)e^{-jk\frac{2\pi}{4}t}dt $

Knowing that T=4 we can visualize the periodic signal in the range $ 0 \leq t \leq 4 $. x(t) = 1 for $ 0 \leq t \leq 1 $ and $ 3 \leq t \leq 4 $. Otherwise, x(t) = 0. Therefore:

$ = \frac{1}{4} \int_{0}^{1}e^{-jk\frac{\pi}{2}t}dt + \frac{1}{4} \int_{3}^{4}e^{-jk\frac{\pi}{2}t}dt $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood