Line 6: | Line 6: | ||
Knowing the formula for the Inverse Fourier transform | Knowing the formula for the Inverse Fourier transform | ||
− | <math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega | + | <math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{j\omega t}d\omega \,</math> |
We can proceed to compute its inverse | We can proceed to compute its inverse |
Revision as of 17:11, 8 October 2008
INVERSE FOURIER TRANSFORM
$ X(\omega) = \delta(\omega - 1) + \delta(\omega - 3) $
Knowing the formula for the Inverse Fourier transform
$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{j\omega t}d\omega \, $
We can proceed to compute its inverse
$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} (\delta(\omega - 1)e^{j\omega t} + \delta(\omega - 3)e^{j\omega t} d\omega \ $
$ x(t) = \frac{1}{2\pi}[e^{jt}+ e^{3jt}] $