(New page: == Inverse Fourier Transform == <math> X(\omega) = 4\delta (\omega - 3) + 5\pi \delta(\omega - 2) \!</math> <math> x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega )e^{j\omega t} d\...)
 
 
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 
== Inverse Fourier Transform ==
 
== Inverse Fourier Transform ==
 
<math> X(\omega) = 4\delta (\omega - 3) + 5\pi \delta(\omega - 2) \!</math>
 
<math> X(\omega) = 4\delta (\omega - 3) + 5\pi \delta(\omega - 2) \!</math>
Line 13: Line 22:
  
 
F(<math>  \frac{2}{\pi }e^{3jt} + \frac{5 }{2 }e^{j2t} \!</math>) = <math> X(\omega) = 4\delta (\omega - 3) + 5\pi \delta(\omega - 2) \!</math>
 
F(<math>  \frac{2}{\pi }e^{3jt} + \frac{5 }{2 }e^{j2t} \!</math>) = <math> X(\omega) = 4\delta (\omega - 3) + 5\pi \delta(\omega - 2) \!</math>
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:47, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


Inverse Fourier Transform

$ X(\omega) = 4\delta (\omega - 3) + 5\pi \delta(\omega - 2) \! $

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega )e^{j\omega t} d\omega \! $

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 4\delta (\omega -3)e^{j\omega t} d\omega + \frac{1}{2\pi} \int_{-\infty}^{\infty} 5\pi \delta (\omega -2)e^{j\omega t} d\omega \! $

Since integrating dirac functions is extremely easy one can easily simplify to the following

$ x(t) = \frac{4}{2\pi }e^{3jt} + \frac{5\pi }{2\pi }e^{j2t} \! $ $ = \frac{2}{\pi }e^{3jt} + \frac{5 }{2 }e^{j2t} \! $

Check:

F($ \frac{2}{\pi }e^{3jt} + \frac{5 }{2 }e^{j2t} \! $) = $ X(\omega) = 4\delta (\omega - 3) + 5\pi \delta(\omega - 2) \! $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009