(New page: <math>X(\omega) = \frac{j\omega}{7 + j\omega}</math> <math>x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty}\frac{j\omega e^{j\omega t}}{7 + j\omega}d\omega</math> <math>= \frac{j\ome...)
 
 
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 
<math>X(\omega) = \frac{j\omega}{7 + j\omega}</math>
 
<math>X(\omega) = \frac{j\omega}{7 + j\omega}</math>
  
Line 7: Line 16:
  
 
       <math>= \frac{d}{dt}e^{-7t}u(t)</math>
 
       <math>= \frac{d}{dt}e^{-7t}u(t)</math>
 +
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:48, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


$ X(\omega) = \frac{j\omega}{7 + j\omega} $

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty}\frac{j\omega e^{j\omega t}}{7 + j\omega}d\omega $

      $ = \frac{j\omega}{2\pi} \int_{-\infty}^{\infty}\frac{e^{j\omega t}}{7 + j\omega}d\omega $


      $ = \frac{d}{dt}e^{-7t}u(t) $



Back to Practice Problems on CT Fourier transform

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch