Line 15: Line 15:
 
<math>\ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} x_1(t)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t} \,dt </math>
 
<math>\ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} x_1(t)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t} \,dt </math>
  
<math> \mathcal{X}(\omega) = \int_{-\infty}^{\1} e^{3t-6}e^{-j\omega t}\,dt + \int_{1}^{\infty} e^{-3t-6}e^{-j\omega t} \,dt </math>
+
<math> \mathcal{X}(\omega) = \int_{-\infty}^{1} e^{3t-6}e^{-j\omega t}\,dt + \int_{1}^{\infty} e^{-3t-6}e^{-j\omega t} \,dt </math>
  
 
<math> \mathcal{X}(\omega) = \frac{1}{e^{6}} \int_{-\infty}^{1} e^{3t-j\omega t}\,dt + \frac{1}{e^{6}} \int_{1}^{\infty} e^{-3t-j\omega t} \,dt </math>
 
<math> \mathcal{X}(\omega) = \frac{1}{e^{6}} \int_{-\infty}^{1} e^{3t-j\omega t}\,dt + \frac{1}{e^{6}} \int_{1}^{\infty} e^{-3t-j\omega t} \,dt </math>
  
 
<math>
 
<math>

Revision as of 16:33, 8 October 2008

$ x(t) = e^{-3|t-2|} $

Noticing that there is an absolute value, we can proceed to divide in tow cases.

When

$ t-2 < 0 \rightarrow x_1(t) = e^{3t-6} $

and when,

$ t-2 >0 \rightarrow x_2(t) = e^{-3t-6} $

So, we can then compute the Fourier series by adding the integrals of each diferent case.

$ \ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} x_1(t)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t} \,dt $

$ \mathcal{X}(\omega) = \int_{-\infty}^{1} e^{3t-6}e^{-j\omega t}\,dt + \int_{1}^{\infty} e^{-3t-6}e^{-j\omega t} \,dt $

$ \mathcal{X}(\omega) = \frac{1}{e^{6}} \int_{-\infty}^{1} e^{3t-j\omega t}\,dt + \frac{1}{e^{6}} \int_{1}^{\infty} e^{-3t-j\omega t} \,dt $


Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch