Line 17: Line 17:
 
<math> \mathcal{X}(\omega) = \int_{-\infty}^{\infty} e^{3t-6}e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} e^{-3t-6}e^{-j\omega t} \,dt </math>
 
<math> \mathcal{X}(\omega) = \int_{-\infty}^{\infty} e^{3t-6}e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} e^{-3t-6}e^{-j\omega t} \,dt </math>
  
<math> \mathcal{X}(\omega) = \frac{1}{e^{6}} \int_{-\infty}^{\infty} e^{3t-6}e^{-j\omega t}\,dt + \frac{1}{e^{6}} \int_{-\infty}^{\infty} e^{-3t-6}e^{-j\omega t} \,dt </math>
+
<math> \mathcal{X}(\omega) = \frac{1}{e^{6}} \int_{-\infty}^{\infty} e^{3t-j\omega t}\,dt + \frac{1}{e^{6}} \int_{-\infty}^{\infty} e^{-3t-j\omega t} \,dt </math>

Revision as of 16:31, 8 October 2008

$ x(t) = e^{-3|t-2|} $

Noticing that there is an absolute value, we can proceed to divide in tow cases.

When

$ t-2 < 0 \rightarrow x_1(t) = e^{3t-6} $

and when,

$ t-2 >0 \rightarrow x_2(t) = e^{-3t-6} $

So, we can then compute the Fourier series by adding the integrals of each diferent case.

$ \ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} x_1(t)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t} \,dt $

$ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} e^{3t-6}e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} e^{-3t-6}e^{-j\omega t} \,dt $

$ \mathcal{X}(\omega) = \frac{1}{e^{6}} \int_{-\infty}^{\infty} e^{3t-j\omega t}\,dt + \frac{1}{e^{6}} \int_{-\infty}^{\infty} e^{-3t-j\omega t} \,dt $

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics