(New page: <math> x(t) = e^{-3|t-2|} </math>) |
|||
Line 1: | Line 1: | ||
+ | |||
<math> x(t) = e^{-3|t-2|} </math> | <math> x(t) = e^{-3|t-2|} </math> | ||
+ | |||
+ | Noticing that there is an absolute value, we can proceed to divide in tow cases. | ||
+ | |||
+ | When | ||
+ | |||
+ | <math> t-2 < 0 \rightarrow x(t) = e^{3t-6} </math> | ||
+ | |||
+ | and when, | ||
+ | |||
+ | <math> t-2 >0 \rightarrow x(t) = e^{-3t-6} </math> | ||
+ | |||
+ | So, we can then compute the Fourier series by adding the integrals of each diferent case. | ||
+ | |||
+ | <math>\ \mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\,</math> |
Revision as of 16:26, 8 October 2008
$ x(t) = e^{-3|t-2|} $
Noticing that there is an absolute value, we can proceed to divide in tow cases.
When
$ t-2 < 0 \rightarrow x(t) = e^{3t-6} $
and when,
$ t-2 >0 \rightarrow x(t) = e^{-3t-6} $
So, we can then compute the Fourier series by adding the integrals of each diferent case.
$ \ \mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\, $