Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier transform]] | ||
+ | [[Category:inverse Fourier transform]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of inverse Fourier transform (CT signals) == | ||
+ | A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]] | ||
+ | ---- | ||
Compute the Inverse Fourier Transform of: | Compute the Inverse Fourier Transform of: | ||
Line 8: | Line 17: | ||
<math>x(t) = \frac{1}{2j}e^{j2\pi t} + \frac{1}{j}e^{-j2\pi t} | <math>x(t) = \frac{1}{2j}e^{j2\pi t} + \frac{1}{j}e^{-j2\pi t} | ||
+ | |||
+ | |||
+ | ---- | ||
+ | [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] |
Latest revision as of 11:52, 16 September 2013
Example of Computation of inverse Fourier transform (CT signals)
A practice problem on CT Fourier transform
Compute the Inverse Fourier Transform of:
$ \,\mathcal{X}(\omega)= \frac{\pi}{j} \delta (w - 2\pi) + \frac{2\pi}{j} \delta (w + 2\pi) $
$ x(t) = \frac{1}{2\pi}\int^{\infty}_{-\infty} \mathcal{X} (\omega) e^{jwt}dw $
$ x(t) = \frac{1}{2\pi} \frac{\pi}{j}\int^{\infty}_{-\infty} \delta(w-2\pi)e^{jwt} dw + \frac{1}{2\pi}\frac{2\pi}{j} \int_{-\infty}^{\infty} \delta(w+2\pi)e^{jwt} dw] $
$ x(t) = \frac{1}{2j}e^{j2\pi t} + \frac{1}{j}e^{-j2\pi t} ---- [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] $