(Computing the Fourier Transform)
 
Line 1: Line 1:
==Computing the Fourier Transform==
+
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
  
 
Compute the Fourier Transform of the signal
 
Compute the Fourier Transform of the signal
Line 30: Line 37:
  
 
<math> X(\omega) =\frac{j \pi}{\omega} \delta(\omega + 2\pi) e^{-j \pi /4}- \frac{j \pi}{w} \delta(\omega + 2\pi) e^{j \pi /4}
 
<math> X(\omega) =\frac{j \pi}{\omega} \delta(\omega + 2\pi) e^{-j \pi /4}- \frac{j \pi}{w} \delta(\omega + 2\pi) e^{j \pi /4}
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:23, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


Compute the Fourier Transform of the signal

$ \ x(t)= \int_{-\infty}^{t} \tau \sin(2 \pi \tau+ \pi/4) d\tau $

By definition the Fourier Transform of a signal is defined as:

$ F[x(t)] = X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

First expressing the signal in as a Fourier series:

However before finding the transform we note that integration in the time domain is just division in the frequency domain. So the game plan is to find the Fourier series of x'(t) then divide by the frequency in the frequency space.

$ \ x'(t)=\sin(2\pi t+ \pi/4) = \frac{e^{2 \pi jt + \pi/4}}{2j} - \frac{e^{-2 \pi jt -j \pi/4}}{2j} $

$ X'(\omega)=\int_{-\infty}^{\infty} \frac{e^{j \pi/4}}{2j} e^{j2 \pi} e^{-j\omega t}dt - \int_{-\infty}^{\infty} \frac{e^{-j \pi/4}}{2j} e^{-j2 \pi} e^{-j\omega t}dt $

Using some foresight we see that a straight up integration of the expression above will yield something infinite or indeterminate, we take advantage of the known Fourier transform of a complex exponential.

$ \int_{-\infty}^{\infty} x(t) dt = \frac{X(\omega)}{\omega} - X(0) \pi \delta(\omega) $

$ X'(\omega)= \frac{e^{j \pi/4}}{2j} F[e^{j2 \pi}] - \frac{e^{-j \pi/4}}{2j} F[e^{-j2 \pi}] $

Noting that $ \ F[e^{j\omega_0}] = 2 \pi \delta(\omega - \omega_0) $

$ \ X'(\omega) = j \pi \delta(\omega + 2\pi) e^{-j \pi /4}- j \pi \delta(\omega + 2\pi) e^{j \pi /4} $

Since $ \ X(\omega) = 0 $

$ X(\omega) =\frac{j \pi}{\omega} \delta(\omega + 2\pi) e^{-j \pi /4}- \frac{j \pi}{w} \delta(\omega + 2\pi) e^{j \pi /4} ---- [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood