Line 1: | Line 1: | ||
− | <math>\mathcal{X}(\omega) = \ | + | <math>\mathcal{X}(\omega) = \left\{ {\begin{array}{*{20}c} |
+ | {1,} & {-2 \le \omega \le 0} \\ | ||
+ | { -1,} & {0 \le g(x) \ge 2} \\ | ||
+ | {0,} & {| \omega| > 2} \\ | ||
+ | \end{array}} \right.</math> | ||
− | |||
− | <math>= \frac{1}{2\pi}\int_{-\infty}^{\infty} | + | <math>\ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega </math> |
− | + | <math>\ x(t)=\frac{1}{2\pi}\int_{-2}^{0}e^{j\omega t}\,d\omega + \frac{1}{2\pi}\int_{0}^{2}-e^{j\omega t}\,d\omega </math> | |
− | + | <math>x(t)=\frac{1}{2\pi}(\frac{1}{jt} - \frac{e^{-j 2 t}}{jt}) + \frac{1}{2\pi}(-\frac{e^{j 2 t}}{jt} + \frac{1}{jt}) </math> |
Revision as of 14:20, 8 October 2008
$ \mathcal{X}(\omega) = \left\{ {\begin{array}{*{20}c} {1,} & {-2 \le \omega \le 0} \\ { -1,} & {0 \le g(x) \ge 2} \\ {0,} & {| \omega| > 2} \\ \end{array}} \right. $
$ \ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega $
$ \ x(t)=\frac{1}{2\pi}\int_{-2}^{0}e^{j\omega t}\,d\omega + \frac{1}{2\pi}\int_{0}^{2}-e^{j\omega t}\,d\omega $
$ x(t)=\frac{1}{2\pi}(\frac{1}{jt} - \frac{e^{-j 2 t}}{jt}) + \frac{1}{2\pi}(-\frac{e^{j 2 t}}{jt} + \frac{1}{jt}) $