(New page: <math>\ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega \,</math>)
 
Line 1: Line 1:
 +
<math>\mathcal{X}(\omega) = \frac{\frac{1}{2j}}{(2 - j4 + jw)^{2}} - \frac{\frac{1}{2j}}{(2 + j4 - jw)^{2}}</math>
  
<math>\ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega \,</math>
+
<math>\ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega </math>
 +
 
 +
<math>= \frac{1}{2\pi}\int_{-\infty}^{\infty}(\frac{\frac{1}{2j}}{(2 - j4 + jw)^{2}} - \frac{\frac{1}{2j}}{(2 + j4 - jw)^{2}})e^{j\omega t}\,d\omega</math>

Revision as of 12:33, 8 October 2008

$ \mathcal{X}(\omega) = \frac{\frac{1}{2j}}{(2 - j4 + jw)^{2}} - \frac{\frac{1}{2j}}{(2 + j4 - jw)^{2}} $

$ \ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega $

$ = \frac{1}{2\pi}\int_{-\infty}^{\infty}(\frac{\frac{1}{2j}}{(2 - j4 + jw)^{2}} - \frac{\frac{1}{2j}}{(2 + j4 - jw)^{2}})e^{j\omega t}\,d\omega $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva