Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
Let x(t)= <math>cos(t)</math>
 
Let x(t)= <math>cos(t)</math>
  
Line 13: Line 23:
  
 
<math>x(t)=\frac{1}{2j\pi t}cos (t){\left.e^{j\omega t}\right]_{-\infty}^{\infty}}</math>
 
<math>x(t)=\frac{1}{2j\pi t}cos (t){\left.e^{j\omega t}\right]_{-\infty}^{\infty}}</math>
 +
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:50, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


Let x(t)= $ cos(t) $


Then

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{j\omega t}d\omega $

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}cos(t)e^{j\omega t}d\omega $

$ x(t)=\frac{1}{2\pi}cos (t)\int_{-\infty}^{\infty}e^{j\omega t}d\omega $

$ x(t)=\frac{1}{2\pi}cos (t){\left.\frac{e^{j\omega t}}{jt}\right]_{-\infty}^{\infty}} $

$ x(t)=\frac{1}{2j\pi t}cos (t){\left.e^{j\omega t}\right]_{-\infty}^{\infty}} $



Back to Practice Problems on CT Fourier transform

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood