Line 14: Line 14:
 
<math>X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega)}dt+\int_{-\infty}^{\infty}e^{-jt(1+\omega)}dt)</math>
 
<math>X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega)}dt+\int_{-\infty}^{\infty}e^{-jt(1+\omega)}dt)</math>
  
<math>X(\omega)={\left. \frac{e^{jt(1-\omega)}}{j(1-\omega))}\right]_{-\infty}^{\infty}} + {\left. \frac{e^{-jt(1-\omega)}}{-j(1+\omega))}\right]_{-\infty}^{\infty}}
+
<math>X(\omega)={\left. \frac{e^{jt(1-\omega)}}{j(1-\omega)}\right]_{-\infty}^{\infty}} + {\left. \frac{e^{-jt(1+\omega)}}{-j(1+\omega)}\right]_{-\infty}^{\infty}}
 +
 
 +
<math>X(\omega)={\left. \frac{(1+\omega)e^{jt(1-\omega)}-(1-\omega)e^{-jt(1+\omega)}{j(1-\omega^2)}\right]_{-\infty}^{\infty}}

Revision as of 07:01, 8 October 2008

Let x(t)= $ cos(t) $


Then

$ X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

$ X(\omega) = \int_{-\infty}^{\infty}cos(t)e^{-j\omega t}dt $

$ X(\omega) = \int_{-\infty}^{\infty}\frac{1}{2}(e^{jt}+e^{-jt})e^{-j\omega t}dt $

$ X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega)}dt+\int_{-\infty}^{\infty}e^{-jt(1+\omega)}dt) $

$ X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega)}dt+\int_{-\infty}^{\infty}e^{-jt(1+\omega)}dt) $

$ X(\omega)={\left. \frac{e^{jt(1-\omega)}}{j(1-\omega)}\right]_{-\infty}^{\infty}} + {\left. \frac{e^{-jt(1+\omega)}}{-j(1+\omega)}\right]_{-\infty}^{\infty}} <math>X(\omega)={\left. \frac{(1+\omega)e^{jt(1-\omega)}-(1-\omega)e^{-jt(1+\omega)}{j(1-\omega^2)}\right]_{-\infty}^{\infty}} $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal