Line 10: Line 10:
 
<math>X(\omega) = \int_{-\infty}^{\infty}\frac{1}{2}(e^{jt}+e^{-jt})e^{-j\omega t}dt</math>
 
<math>X(\omega) = \int_{-\infty}^{\infty}\frac{1}{2}(e^{jt}+e^{-jt})e^{-j\omega t}dt</math>
  
<math>X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega)}+\int_{-\infty}^{\infty}e^{-jt(1+\omega)})</math>
+
<math>X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega)}dt+\int_{-\infty}^{\infty}e^{-jt(1+\omega)}dt)</math>
 +
 
 +
<math>X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega)}dt+\int_{-\infty}^{\infty}e^{-jt(1+\omega)}dt)</math>
 +
 
 +
<math>X(\omega)={\left. \frac{e^{jt(1-\omega)}}{j(1-\omega))}\right]_{-\infty}^{\infty}} + {\left. \frac{e^{-jt(1-\omega)}}{-j(1+\omega))}\right]_{-\infty}^{\infty}}

Revision as of 06:57, 8 October 2008

Let x(t)= $ cos(t) $


Then

$ X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

$ X(\omega) = \int_{-\infty}^{\infty}cos(t)e^{-j\omega t}dt $

$ X(\omega) = \int_{-\infty}^{\infty}\frac{1}{2}(e^{jt}+e^{-jt})e^{-j\omega t}dt $

$ X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega)}dt+\int_{-\infty}^{\infty}e^{-jt(1+\omega)}dt) $

$ X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega)}dt+\int_{-\infty}^{\infty}e^{-jt(1+\omega)}dt) $

$ X(\omega)={\left. \frac{e^{jt(1-\omega)}}{j(1-\omega))}\right]_{-\infty}^{\infty}} + {\left. \frac{e^{-jt(1-\omega)}}{-j(1+\omega))}\right]_{-\infty}^{\infty}} $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch