Line 10: | Line 10: | ||
<math>X(\omega) = \int_{-\infty}^{\infty}\frac{1}{2}(e^{jt}+e^{-jt})e^{-j\omega t}dt</math> | <math>X(\omega) = \int_{-\infty}^{\infty}\frac{1}{2}(e^{jt}+e^{-jt})e^{-j\omega t}dt</math> | ||
− | <math>X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega}+int_{-\infty}^{\infty}e^{-jt(1+\omega)})</math> | + | <math>X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega)}+\int_{-\infty}^{\infty}e^{-jt(1+\omega)})</math> |
Revision as of 06:50, 8 October 2008
Let x(t)= $ cos(t) $
Then
$ X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $
$ X(\omega) = \int_{-\infty}^{\infty}cos(t)e^{-j\omega t}dt $
$ X(\omega) = \int_{-\infty}^{\infty}\frac{1}{2}(e^{jt}+e^{-jt})e^{-j\omega t}dt $
$ X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega)}+\int_{-\infty}^{\infty}e^{-jt(1+\omega)}) $