Line 3: Line 3:
 
<math> X(w) = \int_{-\infty}^{1}e^{(t-1)}e^{-jwt}dt+\int_{1}^{\infty}e^{-(t-1)}e^{-jwt}dt</math><br><br>
 
<math> X(w) = \int_{-\infty}^{1}e^{(t-1)}e^{-jwt}dt+\int_{1}^{\infty}e^{-(t-1)}e^{-jwt}dt</math><br><br>
 
<math> X(w) = \int_{-\infty}^{1}e^{-1}e^{(1-jw)t}dt+\int_{1}^{\infty}e^{1}e^{(1+jw)t}dt</math><br><br>
 
<math> X(w) = \int_{-\infty}^{1}e^{-1}e^{(1-jw)t}dt+\int_{1}^{\infty}e^{1}e^{(1+jw)t}dt</math><br><br>
<math> X(w) = {\left.\frac{e^{-1}e^{(1-jw)t}}{1-jw}\right]_{\infty}^{0}}}}+{\left.\frac{e^{1}e^{-(1+jw)t}}{1+jw}\right]_{\infty}^{0}}}}</math><br><br>
+
<math> X(w) = {\left.\frac{e^{-1}e^{(1-jw)t}}{1-jw}\right]^1_{-\infty} }+{\left.\frac{e^{1}e^{-(1+jw)t}}{1+jw}\right]^{\infty}_1 }</math><br><br>
 
</math>
 
</math>

Revision as of 16:57, 7 October 2008

$ x(t) = e^{-|t-1|} \, $

$ X(w) = \int_{-\infty}^{\infty}e^{-|t-1|}e^{-jwt}dt $

$ X(w) = \int_{-\infty}^{1}e^{(t-1)}e^{-jwt}dt+\int_{1}^{\infty}e^{-(t-1)}e^{-jwt}dt $

$ X(w) = \int_{-\infty}^{1}e^{-1}e^{(1-jw)t}dt+\int_{1}^{\infty}e^{1}e^{(1+jw)t}dt $

$ X(w) = {\left.\frac{e^{-1}e^{(1-jw)t}}{1-jw}\right]^1_{-\infty} }+{\left.\frac{e^{1}e^{-(1+jw)t}}{1+jw}\right]^{\infty}_1 } $

</math>

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010