(The Inverse Fourier Transform)
Line 16: Line 16:
  
  
<math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{ e^{j(4 \omega + \frac{\pi}{3})} + e^{j(4 \omega + \frac{\pi}{3})}}{2}e^{j\omega t}d\omega</math>
+
<math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{ e^{j(4 \omega + \frac{\pi}{3})} + e^{-j(4 \omega + \frac{\pi}{3})}}{2}e^{j\omega t}d\omega</math>

Revision as of 16:06, 7 October 2008

The Signal

$ X(j \omega) = \cos(4 \omega + \frac{\pi}{3}) $

Taken from 4.22.b from the course book, it looks interesting and I want to try it.


The Inverse Fourier Transform

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j \omega)e^{j\omega t}d\omega $


$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\cos(4 \omega + \frac{\pi}{3})e^{j\omega t}d\omega $


$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{ e^{j(4 \omega + \frac{\pi}{3})} + e^{-j(4 \omega + \frac{\pi}{3})}}{2}e^{j\omega t}d\omega $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood