(New page: == inverse F.T == assume <math>X(\omega) = 7\pi\delta(\omega-3\pi)+\delta(\omega+5\pi)-\delta(\omega-7\pi)\!</math>)
 
Line 4: Line 4:
  
 
<math>X(\omega) = 7\pi\delta(\omega-3\pi)+\delta(\omega+5\pi)-\delta(\omega-7\pi)\!</math>
 
<math>X(\omega) = 7\pi\delta(\omega-3\pi)+\delta(\omega+5\pi)-\delta(\omega-7\pi)\!</math>
 +
 +
 +
== answer ==
 +
 +
<math>x(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty}7\pi\delta(\omega-3\pi)+\delta(\omega+5\pi) - \delta(\omega-7\pi)e^{jwt}dw</math>
 +
 +
<math>=\frac{1}{2\pi}[2\pi^{j3\pi t} + e^{-j5\pi t}- e^{j7\pi t}]</math>
 +
 +
<math>=e^{j3\pi} + \frac{1}{2\pi}[e^{-j5\pi t}-e^{j7\pi t}]</math>

Revision as of 15:15, 7 October 2008

inverse F.T

assume

$ X(\omega) = 7\pi\delta(\omega-3\pi)+\delta(\omega+5\pi)-\delta(\omega-7\pi)\! $


answer

$ x(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty}7\pi\delta(\omega-3\pi)+\delta(\omega+5\pi) - \delta(\omega-7\pi)e^{jwt}dw $

$ =\frac{1}{2\pi}[2\pi^{j3\pi t} + e^{-j5\pi t}- e^{j7\pi t}] $

$ =e^{j3\pi} + \frac{1}{2\pi}[e^{-j5\pi t}-e^{j7\pi t}] $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood