(Fourier Transform)
(Fourier Transform)
Line 8: Line 8:
  
 
<math> = \int_{1}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \!</math> + <math> \int_{-\infty}^{1} e^{2|t-1|} e^{-j\omega t} dt \!</math>
 
<math> = \int_{1}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \!</math> + <math> \int_{-\infty}^{1} e^{2|t-1|} e^{-j\omega t} dt \!</math>
 +
 +
 +
... LOTS OF MATH...
 +
 +
 +
= <math> \frac{e^{-j \omega}}{2 + j \omega} + \frac{e^{-j \omega}}{2 - j \omega}

Revision as of 15:38, 7 October 2008

Fourier Transform

Signal: x(t) = $ e^{3|t-1|} $

$ X(j \omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \! $

$ = \int_{-\infty}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \! $

$ = \int_{1}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \! $ + $ \int_{-\infty}^{1} e^{2|t-1|} e^{-j\omega t} dt \! $


... LOTS OF MATH...


= $ \frac{e^{-j \omega}}{2 + j \omega} + \frac{e^{-j \omega}}{2 - j \omega} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood